The Embedded Graphs of a Knot and the Partial Duals of a Plane Graph

Iain Moffatt
University of South Alabama

SIAM Conference on Discrete Mathematics, 14th June 2010
Ribbon graphs describe (cellularly) embedded graphs.
The geometric dual

The (geometric) dual G^* of a cellularly embedded graph G

- One vertex of G^* in each face of G.
- One edge of G^* whenever faces of G are adjacent.
The (geometric) dual G^* of a cellularly embedded graph G

- One vertex of G^* in each face of G.
- One edge of G^* whenever faces of G are adjacent.

The (geometric) dual G^* of a ribbon graph G

- Fill in punctures of surface G with vertices of G^*,
- then delete vertices of G to get G^*.

Note: markings on G induce markings on G^*.
Arrow marked ribbon graphs

Edges can be described by pairs of coloured arrows on the boundary:

1. orient edge e
2. add arrows where e meets vertices
3. remove edge.

Example

\[
\begin{align*}
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array} & \quad \begin{array}{ccc}
1 & 2 & 3 \\
\end{array} & \quad \begin{array}{ccc}
1 & 2 & 3 \\
\end{array} \\
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array} & \quad \begin{array}{ccc}
1 & 2 & 3 \\
\end{array} & \quad \begin{array}{ccc}
1 & 2 & 3 \\
\end{array} \\
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array} & \quad \begin{array}{ccc}
1 & 2 & 3 \\
\end{array} & \quad \begin{array}{ccc}
1 & 2 & 3 \\
\end{array} \\
\end{align*}
\]
The **partial dual** \(G^A \) of \(G \) is obtained by forming the dual only at the edges in \(A \subseteq E(G) \).

Definition: partial duals (S. Chmutov ’07)

1. \(A \subseteq E(G) \)
2. Replace edges **not** in \(A \) by arrows.
3. Form geometric dual.
4. Add back edges.
5. Gives the partial dual \(G^A \).

Example

\[
G = \begin{array}{ccc}
A & \sim & B \\
\end{array}
\quad \Rightarrow \quad \begin{array}{ccc}
A & \sim & B \\
\end{array}
\]

\(G \{e\} \)

I. Moffatt (South Alabama)

Partial Duals of a Plane Graph

SIAM DM ’10
Another example

Forming G^A with $A = \{2, 3\}$.

1: given G and A

2: “hide” edges not in A

3: form the dual

4 & 5: add edge back to get G^A
The example continued...

G= has four partial duals (up to isomorphism):

- Observe that G and G^A can have very different graph theoretic and topological properties.
Some basic properties

- \(G^E(G) = G^* \) and \(G^\emptyset = G \).
- \((G^A)^A = G \). (In general, \((G^A)^B = G^{A \Delta B} \).)
- \(G \) orientable ⇔ \(G^A \) orientable.

Many properties of duality extent to partial duality

- Topological Tutte polynomial is well behaved under partial duality.
- Unifies various connections between knot and graph polynomials.
- Admits algebraic characterization.
- Extends relations between duals and medial graphs to maps.
- Much remains to be explored!
Some basic properties

- \(G^E(G) = G^* \) and \(G^\emptyset = G \).
- \((G^A)^A = G \). (In general, \((G^A)^B = G^{A\Delta B} \).)
- \(G \) orientable \(\iff \) \(G^A \) orientable.

Many properties of duality extent to partial duality

- Topological Tutte polynomial is well behaved under partial duality.
- Unifies various connections between knot and graph polynomials.
- Admits algebraic characterization.
- Extends relations between duals and medial graphs to maps.
- Much remains to be explored!

Advertisement.

Go to Jo Ellis-Monaghan’s talk **10:30-10:55 Thursday** to hear about our joint work on generalized duals, medial graphs and graph polynomials.
There is a well known way to get a plane graph from a link diagram:

Tait graphs
Tait graphs

There is a well known way to get a plane graph from a link diagram:

1. Moffatt (South Alabama)

Partial Duals of a Plane Graph

SIAM DM ’10
The ribbon graphs of a link diagram (Dasbach, Futer, Kalfagianni, Lin & Stoltzfus ’06)

Associates $\leq 2^\#\text{crossings}$ ribbon graphs to a link diagram.

- Choose a (signed) smoothing at each crossing:
 -
 -
 -
 -

- Gives presentation of a ribbon graph:
 -
 -

Example
A question from knot theory

Example

The ribbon graphs of the Hopf link are:

A fundamental question.

- Which ribbon graphs arise from link diagrams?

Not all of them. For example, \(\) doesn’t.

A graph theoretic formulation.

- Which ribbon graphs are partial duals of plane graphs?

The answer has to do with the separability of a ribbon graph.
Separable ribbon graphs

Definition
- A **separation** of a ribbon graph G is a decomposition into two ribbon subgraphs P and Q which meet at exactly one vertex.
- The vertex where P and Q meet is a **separating vertex**.

Example

$G = \begin{array}{c}
\text{separable} \\
\end{array}$

$= P$

$= Q$

$= Q$

non-separable

I. Moffatt (South Alabama)
Partial Duals of a Plane Graph
SIAM DM ’10
Separable ribbon graphs

Definition
- A *separation* of a ribbon graph G is a decomposition into two ribbon subgraphs P and Q which meet at exactly one vertex.
- The vertex where P and Q meet is a *separating vertex*.

Example
We will be interested in separating ribbon graphs into plane graphs.

- $G = \begin{array}{c}
\begin{array}{c}
\text{can be separated into two plane graphs}
\end{array}
\end{array}$

- $G = \begin{array}{c}
\begin{array}{c}
\text{can’t be separated into two plane graphs}
\end{array}
\end{array}$
Definition

A graph \(G \) has a **1-decomposition into two graphs** if:

1. \(G \) has a decomposition into two (not necessarily connected and possibly empty) ribbon subgraphs \(P \) and \(Q \);
2. each vertex incident to edges in both \(P \) and \(Q \) is a separating vertex of the connected component in which it lies.

If \(P \) and \(Q \) are plane, the 1-decomposition is into **two plane graphs**.

Example

Graph \(G \) is decomposed into subgraphs \(P \) and \(Q \).
The Main Theorem

Theorem

An embedded graph G is a partial dual of a plane graph if and only if there exists a 1-decomposition of G into two plane graphs.

![Diagram of partial duals and non-duals of plane graphs]

Theorem

Let G be an embedded graph and $A \subseteq E(G)$. Then G^A is a plane graph if and only if A defines a 1-decomposition of G into two plane graphs.
Idea of proof: “if”

Starting with a 1-decomposition into two plane graphs

form P^* join $= vQ$
Idea of proof: “only if”

- Edges in A are red, edges not in A are blue.
- To construct partial dual G^A:
 - If $e \in A$.
 - If $e \notin A$.

$G = \ldots$ presentation of G^A

Red/blue markers lie in different regions defining a 1-decomposition.

$G^A = \ldots$
Recall we were motivated by understanding which ribbon graphs presented links.

Theorem

A connected (signed) embedded graph G represents a link diagram if and only if there exists a 1-decomposition of G into two plane graphs.

All ribbon graphs of a link diagram are partial duals (of the Tait graphs).

Can use separability result to classify all diagrams presented by the same ribbon graph.
I. Moffatt, *Partial duals and the graphs of knots*.

