What is a ribbon graph

- Informally, a ribbon graph is a "topological graph," with
 * discs ♦️ for vertices
 * ribbons 🎨 for edges

* Eq.

- I'll skip a formal definition since a picture is more effective.

- We can read off standard graph parameters:
 \(v(G) = \# \text{ vertices} \)
 \(e(G) = \# \text{ edges} \)
 \(b(G) = \# \text{ components} \)

- But also some topological parameters
 \(f(G) = \# \text{ boundary components} \)
 \(g(G) = \text{ genus} \)
 \(\Delta(G) = \begin{cases} 2 \times g(G) & \text{if orient} \\ g(G) & \text{if non-orient} \end{cases} \)

- Euler's Formula:
 \(v(G) - e(G) + f(G) = 2 \times b(G) - \Delta(G) \)

- Ribbon graphs describe exactly cellularly embedded graphs

- Ribbon graphs are equivalent to describe equiv. cell emb. graphs

- i.e., \(G \cong G' \) if homeo, taking \(G \) to \(G' \) that preserves
 - edges
 - vertices
 - cyclic order
 - orientation if \(G \) orientable

- Warning:
 - Ribbon graphs are not embedded in \(\mathbb{R}^3 \)
 - No concept of a non-loop edge being "twisted"
Arrow presentations

- A combinatorial description of a ribbon graph.
- Set of circles
- Pairs of directed arrows
Deletion

- Edge deletion is defined by removing an edge e of G.
 \[G \setminus e \text{ (or } G \setminus v \text{)} \]
 - Order of deletion does not matter so $A = \{ e \}$, and $G_A = G \setminus e$.
- Vertex deletion: remove v and its incident edges.
 \[G \setminus v \]

- H is a ribbon subgraph of G if it can be obtained by deleting vertices and edges of G.
- H is spanning if $V(G) = V(H)$ (so $H = G \setminus A$)

Example:

Ribbon graphs are obviously closed under deletion

But: Surfaces change when viewing as cell emb. graphs:

\[\text{torus} \]

Remark:
Closure under deletion is a main reason for working with ribbon graphs:

- cell emb.
- not cell emb.

so cell emb. graphs are not (naturally) closed under deletion.

Exercise:
Add presentations

Arrow presentations

How should we define contraction?
- Three routes to the same vertex
- Not a loop
- Not a null

identity evvuv into a new vertex

Obvious case: care is needed

Cell ends graphs
- For the quotient space resolve any point points
- Each end point
- Each boundary point duplicate of uvw

Nulsen graphs
- Attatch a cicle to each boundary point
- Label uvw

It e's a loop all is fine!
Minors

Graph minors

H minor of G if obtained by vertex deletion, edge deletion, edge contraction.

Example

- G tree \iff no O-minor
- G plane \iff no K_5, $K_{3,3}$-minor

A family \mathcal{F} is minor-closed if $G \in \mathcal{F} \Rightarrow \text{all minors of } G \in \mathcal{F}$.

Robertson–Seymour

- Every minor-closed family is characterised by a finite set of excluded minors.
- In any infinite collection of graphs, one is a minor of another.

Example

- G embeddable in \mathbb{R}^2 \Rightarrow no minor is a K_4 or $K_{3,3}$
- G embeddable in Σ \Rightarrow no minor is a finite list.

Big problem: find excluded minor characterisations of various families.

Ribbon graph minors

- Ribbon graphs with rigidity, del. + cont.

Example

- $\mathcal{R} = (\mathcal{R}_5, \mathcal{R}_6)$
- Every \mathcal{R} is \mathcal{R}_5 has \mathcal{R}_6 as a minor.

(But \mathcal{R}_6)

(Note that without contraction of loops, this would be an infinite antichain.)

Want to find excluded minor characterisations of various families.

Then G orientable \iff no O-minor.

Proof:

- Non-orient \Rightarrow \exists simple ribbon roving cycle
- \Rightarrow \exists cycle has a modulus band
- \Rightarrow delete every diagonal in cycle, contract all but one edge
- G orient \Rightarrow all minors orient \Rightarrow no O-minor.
proof

- $\chi(G) \leq \chi'(G)$
- so if $\chi(G) = 1$, $\chi'(G) \geq 1$.

Converse

- Contract spanning trees of G to get union of 1 vertex.
- If an edge touches more than 1 χ-crt, delete it.
- Reduces χ-crts
- Does not change genus.

enough to show in hurewicz

- bonding opt no isolated vertices.
- there is always an edge we can delete that drops
- χ by 2 if orient
- χ by 1 if non-orient.

we have seen orient case.

so assume non-orient.

- \[
\begin{array}{c}
\text{slide} \\
\text{slide} \\
\text{slide}
\end{array}
\]

- property true before and after slide.
- normal form.

Note: $G-e$ could be orient or non-orient.

* not true if more than 1 χ-crt:
\[
\chi(G-e) = 1
\]

eg
\[
\chi = 1
\]