Example of Frisch-Waugh Theorem

The Frisch-Waugh theorem says that the multiple regression coefficient of any single variable can also be obtained by first netting out the effect of other variable(s) in the regression model from both the dependent variable and the independent variable.

\[\beta_1 = (X_1'M_2'M_2X_1)^{-1}X_1'M_2'y = (X_1'M_1X_1)^{-1}X_1'y - (X_1'M_1X_1)^{-1}X_1'M_2X_1\beta_2 \]

In practice this means regressing the residuals when \(y \) is regressed on \(X_2 \), \((M_2y)\), on the residuals from when \(X_1 \) is regressed on \(X_2 \), \((M_2X_1)\)

First regress the dependent variable on the \(X_2 \) variable (in this case London)

```stata
. reg grosspay london
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 12266</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2998066.02</td>
<td>1</td>
<td>2998066.02</td>
<td>F(1, 12264) = 18.73</td>
</tr>
<tr>
<td>Residual</td>
<td>1.9629e+09</td>
<td>12264</td>
<td>160055.968</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1.9659e+09</td>
<td>12265</td>
<td>160287.359</td>
<td>R-squared = 0.0014</td>
</tr>
</tbody>
</table>

| grosspay | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----------|-------|-----------|-------|------|----------------------|
| london | 50.70394 | 11.7154 | 4.33 | 0.000 | 27.73992 - 73.66797 |
| _cons | 232.5472 | 3.821297 | 60.86 | 0.000 | 225.0568 - 240.0375 |

```stata
. predict uhat1, resid
```

and save the residuals (named uhat1). This gives \(M_2y \)

Next regress the \(X_1 \) variable on the \(X_2 \) variable and save these residuals (named uhat2). This gives \(M_2X_1 \)

```stata
. reg age london
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 12266</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2681.55785</td>
<td>1</td>
<td>2681.55785</td>
<td>F(1, 12264) = 21.36</td>
</tr>
<tr>
<td>Residual</td>
<td>1539528.39</td>
<td>12264</td>
<td>125.532322</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1542209.95</td>
<td>12265</td>
<td>125.740722</td>
<td>R-squared = 0.0017</td>
</tr>
</tbody>
</table>

| age | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----|-----------|-----------|-------|------|----------------------|
| london | -1.516403 | .3280945 | -4.62 | 0.000 | -2.15952 - .8732865 |
| _cons | 40.01296 | .107017 | 373.89| 0.000 | 39.80318 - 40.22273 |

```stata
. predict uhat2, resid
```
Now regress the residuals $2y$ on the residuals M_2X_1.

```
. reg uhat1 uhat2
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 12266</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>473241.472</td>
<td>1</td>
<td>473241.472</td>
<td>F(1, 12264) = 2.96</td>
</tr>
<tr>
<td>Residual</td>
<td>1.9625e+09</td>
<td>12264</td>
<td>160017.382</td>
<td>Prob > F = 0.0855</td>
</tr>
<tr>
<td>Total</td>
<td>1.9629e+09</td>
<td>12265</td>
<td>160042.92</td>
<td>Adj R-squared = 0.0002</td>
</tr>
</tbody>
</table>

```
------------------------------------------------------------------------------
| uhat1 | Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] | | |
|---|---|---|---|---|---|
| uhat2  | .5544311 | .3223961 | 1.72 | 0.086         | -.077516    1.186378 |
| _cons  | 2.02e-07  | 3.61187  | 0.00 | 1.000     | -7.079833    7.079834 |
```

and check that this is the same as in the multiple regression (it is)

```
. reg grosspay age london
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 12266</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3471307.55</td>
<td>2</td>
<td>1735653.78</td>
<td>F(2, 12263) = 10.85</td>
</tr>
<tr>
<td>Residual</td>
<td>1.9625e+09</td>
<td>12263</td>
<td>160030.429</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1.9659e+09</td>
<td>12265</td>
<td>160287.359</td>
<td>Adj R-squared = 0.0016</td>
</tr>
</tbody>
</table>

```
------------------------------------------------------------------------------
| grosspay | Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] | | |
|---|---|---|---|---|---|
| age      | .5544311 | .3224092 | 1.72 | 0.086         | -.0775417    1.186404 |
| london   | 51.54468 | 11.72466 | 4.40 | 0.000     | 28.5625    74.52687 |
| _cons    | 210.3628  | 13.45452 | 15.64 | 0.000     | 183.9898    236.7357 |
```

In practice you will hardly ever use the residual approach to obtain multiple regression coefficients (one exception to this is if the X_2 variables capture seasonal or time effects, in which case you can think of the 2-step process as an alternative method of “de-seasonalising” or “detrending” both dependent and control variables such as exhibit strong trends or seasonality as in the road accidents data below). The usefulness of this exercise is that it helps makes clearer the partialing out nature of multiple regression.

Another way to think about partialling out is to recognise that the multivariate OLS estimate of any single variable can always be written as

\[
\hat{\beta}_k = \frac{\text{Cov}(M_2X_k, Y)}{\text{Var}(M_2X_k)}
\]

(see lecture notes and exercise 1)

Consider an OLS regression of food share expenditure on total expenditure and age

```
use "C:\qea\food.dta", clear
```

The multivariate regression model is given by

```
. reg foodsh expnethsum age
```

```
Source |       SS       df       MS              Number of obs =     200
-------------+------------------------------           F(  2,   197) =   29.37
Model |  4290.50386     2  2145.25193           Prob > F      =  0.0000
Residual |  14387.5993   197  73.0334989           R-squared     =  0.2297
-------------+------------------------------           Adj R-squared =  0.2219
Total |  18678.1031   199  93.8598148           Root MSE      =   8.546

------------------------------------------------------------------------------
foodsh |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
expnethsum |  -.0128509   .0021607    -5.95   0.000    -.0171119   -.0085898
age |   .1023938   .0418339     2.45   0.015      .019894    .1848935
   _cons |   18.78057   2.657014     7.07   0.000     13.54072    24.02041
------------------------------------------------------------------------------
```

We are interested in understanding the estimated OLS coefficient on age in a multiple regression

Partialling out the effect of total expenditure on the food share

```
. reg foodsh expnethsum
```

```
Source |       SS       df       MS              Number of obs =     200
-------------+------------------------------           F(  1,   198) =   51.46
Model |  3852.96953     1  3852.96953           Prob > F      =  0.0000
Residual |  14825.1336   198  74.8744122           R-squared     =  0.2063
-------------+------------------------------           Adj R-squared =  0.2023
Total |  18678.1031   199  93.8598148           Root MSE      =   8.653

------------------------------------------------------------------------------
foodsh |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
expnethsum |  -.0147015   .0020494    -7.17   0.000     -.018743     -.01066
   _cons |   24.87616   .9376504    26.53   0.000      23.0271    26.72522
------------------------------------------------------------------------------
```

Partialling out the effect of total expenditure on age

```
. reg age expnethsum
```

```
Source |       SS       df       MS              Number of obs =     200
-------------+------------------------------           F(  1,   198) =   27.63
Model |  5823.33649     1  5823.33649           Prob > F      =  0.0000
Residual |  41731.6185   198  210.76575           R-squared     =  0.1225
-------------+------------------------------           Adj R-squared =  0.1180
Total |   47554.955   199  238.969623           Root MSE      =  14.518

------------------------------------------------------------------------------
age |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
expnethsum |  -.0180738   .0034385    -5.26   0.000    -.0248545   -.0112931
   _cons |   59.53094   1.573165    37.84   0.000     56.42863    62.63324
------------------------------------------------------------------------------
```
and saving this residual

. predict xhat2 if e(sample), resid

then regressing the first residual on the second (in a univariate model) we see
the estimated OLS estimate on age from the multiple regression above

. reg yhat2 xhat2

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>437.53</td>
<td>1</td>
<td>437.53</td>
<td>F(1, 198) = 6.02</td>
</tr>
<tr>
<td>Residual</td>
<td>14387.6</td>
<td>198</td>
<td>72.66</td>
<td>Prob > F = 0.0150</td>
</tr>
<tr>
<td>Total</td>
<td>14825.1</td>
<td>199</td>
<td>74.49</td>
<td>R-squared = 0.0246</td>
</tr>
</tbody>
</table>

| yhat2 | Coef. Std. Err. t P>|t| [95% Conf. Interval] |
|-------|------------------|-----|---------|---------------------|
| xhat2 | .1023938 .0417281 2.45 0.015 .020105 .1846824 |
| _cons | 6.26e-09 .602763 0.00 1.000 -1.18866 .188659 |

. predict ahat if e(sample)
(option xb assumed; fitted values)

. sort xhat2

Graphing this relationship

. two (scatter yhat2 xhat2) (line ahat xhat2)