Lectures 8, 9 & 10. Multiple Regression Analysis

In which you learn how to apply the principles and tests outlined in earlier lectures to more realistic models involving more than 1 explanatory variable and apply new tests to situations relevant to multiple regression analysis
In most cases unlikely can explain all of behaviour in the dependent variable by a single explanatory variable. Most problems require 2 or more right hand side variables to capture behaviour adequately.

Consider generalising initially to case of two explanatory variables:

Suppose for example that

\[wage = \beta_0 + \beta_1 Age + \beta_2 YearsofSchooling + u \]

ie wages thought to increase with age and also increase with number of years of schooling.

The interpretation of the coefficients now corresponds to the *ceteris paribus* (other things equal) assumption often made in economic theory, since the presence of schooling now “nets out” the influence on age — rather than relying on its influence through the residuals as in 2 variable model - so the estimated coefficient on age can be considered as holding schooling constant.

Given the ols prediction

\[\hat{wage} = \hat{\beta}_0 + \hat{\beta}_1 Age + \hat{\beta}_2 YearsofSchooling \]

follows that change in the wage

\[\Delta wage = \beta_1 \Delta Age + \beta_2 \Delta YearsofSchooling \]

and the effect on the wage when schooling is held fixed implies that
\[\Delta YearsofSchooling = 0 \]

So that in this case

\[\Delta wage = \hat{\beta}_1 \Delta Age \quad \text{and hence} \quad \Delta \frac{\Delta wage}{\Delta Age} = \hat{\beta}_1 \]

Hence multiple OLS regression coefficients are said to be equivalent to *partial derivatives* holding the effect of the other variables fixed (ie set to zero change)

\[\frac{\partial Y}{\partial X_1} \Bigg|_{\text{allother} \times \text{constant}} \Rightarrow \frac{\partial \hat{\text{Wage}}}{\partial \hat{\text{Age}}} \Bigg|_{\text{schooling} \times \text{constant}} \]

The derivation of OLS coefficients is much as before. The idea remains to choose the coefficients that minimise the sum of squared residuals.

In the example above there are 2 explanatory variables so

\[RSS = \sum u_i^2 = \sum (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1i} - \hat{\beta}_2 X_{2i})^2 \]

First we expand \(RSS \) as shown, and then we use the first order conditions for minimising it.
The only difference between this and simple regression is that there are now 3 not 2 unknowns ($\beta_0 \beta_1 \beta_2$) and 3 not 2 equations to solve for them

$$\frac{\partial RSS}{\partial \beta_0} = 0 = -2\sum_{i=1}^{N}(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1i} - \hat{\beta}_2 X_{2i})$$

$$\frac{\partial RSS}{\partial \beta_1} = 0 = -2\sum_{i=1}^{N}X_{1i}(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1i} - \hat{\beta}_2 X_{2i})$$

$$\frac{\partial RSS}{\partial \beta_2} = 0 = -2\sum_{i=1}^{N}X_{2i}(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1i} - \hat{\beta}_2 X_{2i})$$

Solving these 3 equations gives

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}_1 - \hat{\beta}_2 \bar{X}_2$$

$$\hat{\beta}_1 = \frac{\text{Cov}(X_1, Y)\text{Var}(X_2) - \text{Cov}(X_2, Y)\text{Cov}(X_1, X_2)}{\text{Var}(X_1)\text{Var}(X_2) - [\text{Cov}(X_1, X_2)]^2}$$

$$\hat{\beta}_2 = \frac{\text{Cov}(X_2, Y)\text{Var}(X_1) - \text{Cov}(X_1, Y)\text{Cov}(X_1, X_2)}{\text{Var}(X_1)\text{Var}(X_2) - [\text{Cov}(X_1, X_2)]^2}$$

The equations are similar to those in the 2 variable model, but contain extra terms which net out the influence of the other variables in explaining Y and the x variable of interest

ie the difference in the OLS estimate of β_1 in the 2 and 3 variable model depends on

a) the covariance between the variables, $\text{Cov}(X_1, X_2)$

b) the influence of the omitted variable on the dependent variable, $\text{Cov}(X_2, Y)$

c) the variance of the extra variable, $\text{Var}(X_2)$

Example:
A simple 2 variable regression of pay on age gives

```
. reg hourpay age

Source |       SS       df       MS              Number of obs =   12098
-------------+------------------------------           F(  1, 12096) =  133.08
Model |  5207.03058     1  5207.03058           Prob > F      =  0.0000
Residual |  473292.608 12096  39.1280264           R-squared     =  0.0109
-------------+------------------------------           Adj R-squared =  0.0108
Total |  478499.638 12097  39.5552317           Root MSE      =  6.2552

------------------------------------------------------------------------------
hourpay |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   age |   .0586134    .005081    11.54   0.000     .0486539    .0685729
   _cons |   6.168383   .2066433    29.85   0.000     5.763329    6.573437
------------------------------------------------------------------------------
```

We suspect that age may be picking up part of the effect of years of schooling (older workers tend to have less schooling since the minimum school leaving age was raised to 15 in 1948 and then 16 in 1974).
So a multiple (3 variable) regression including schooling

```
. reg hourpay age school
```

```
Source |       SS       df       MS              Number of obs =   12098
-------------+------------------------------           F(  2, 12095) =  913.94
Model |   62820.398     2   31410.199           Prob > F      =  0.0000
Residual |   415679.24 12095  34.3678578           R-squared     =  0.1313
-------------+------------------------------           Adj R-squared =  0.1311
Total |  478499.638 12097  39.5552317           Root MSE      =  5.8624

------------------------------------------------------------------------------
hourpay |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
    age |   .0975989   .0048561    20.10   0.000     .0880801    .1071178
   school |   .8554028   .0208923    40.94   0.000     .8144506    .8963549
     _cons |  -5.916321   .3530201   -16.76   0.000    -6.608297   -5.224345
```

The coefficient on age has nearly doubled and the effect of schooling is positive and significant.

ie coefficient on age in the simple regression is biased down because it is also picking up the effect that older workers tend to have less schooling (and less schooling means lower wages) rather than the effect of age on wages net of schooling which is what the 3 variable regression does.

Properties of Multiple Regression Coefficients

Can show that the properties of OLS estimators of the 2 variable model carry over into the general case, so that OLS estimators are always

i) Unbiased
ii) Efficient (smallest variance of any unbiased estimator)

In the 3 variable model can show that

\[
Var(\beta_1) = \frac{s^2}{N*Var(X)} \cdot \frac{1}{1 - r_{X_1X_2}^2}
\]

\(r_{X_1X_2}^2\) is the square of the correlation coefficient between \(X_1\) & \(X_2\)

(compared with \(Var(\beta_i) = \frac{s^2}{N*Var(X)}\) in the 2 variable model)

where now \(s^2 = \frac{\sum_{i=1}^{N} u_i^2}{N-k}\)

and \(k = \text{no. of rhs coefficients (including the constant)}\)

(rather than \(s^2 = \frac{\sum_{i=1}^{N} u_i^2}{N-2}\) as in 2 variable model)

As before
1) an increase in the residual variance, \(s^2 \)
2) a fall in sample size \(N \)
will make the OLS estimates of the effects of the \(X \) variables less precise

Now in addition
3) an increased correlation between \(X_1 \) & \(X_2 \)

will also make the OLS estimates of the effects of the \(X \) variables less precise
(can’t distinguish between the contribution of the individual variables if correlation is high)

The consequences of this high correlation is called **multicolinearity**
and the symptoms are that

1) while OLS estimates remain unbiased
2) the standard errors are much larger than would be in the absence of multicolinearity

\[
\hat{\beta} = \beta + \frac{\sigma e}{\sigma y}
\]

and since

\[
t = \frac{\hat{\beta} - \beta}{s.e.(\beta)}
\]

the estimated \(t \) values will be smaller than otherwise.

You may therefore conclude that variables are statistically insignificant (from zero) when not (ie Type II error)

In practice nearly all estimation suffers from multicolinearity since unlikely that the correlation between variables is zero, (if it is the variables are said to be orthogonal).

The issue then becomes how serious a problem is it.

Detection:
1) Low \(t \) values and high \(R^2 \)
2) The estimates may be sensitive to addition or subtraction of a small number of observations
3) Look at the simple correlation coefficients between any 2 variables. A correlation coefficient \(>0.8 \) usually says there are problems. Or if the correlation between any two right hand side variables is greater than the correlation between that of each with the dependent variable

Problem: In cases when there are many right hand side variables this strategy may not pick up **group** as opposed to **pairwise** correlations.

In this case run an auxiliary regression of **any one** of the right hand side variables on **all** the other \(X \) variables

\[
X_1 = \delta_0 + \delta_2X_2 + \delta_3X_3 + \ldots \delta_kX_k + u
\]

and look at the \(R^2 \) from this regression. An \(R^2 > 0.8 \) suggests problems
Solutions:
Unfortunately the only sensible thing to do when faced with multicolinearity is either to

1) Get more data – (since an increase in N will reduce the standard errors)

2) Get more (uncorrelated) variables – since this should reduce the residual variance s^2
 and offset the multicolinearity effect.

If this fails then quite often the only solution is to drop one of the original correlated
variables. The issue cannot be answered given the available data.

Example: Multicolinearity

Often in time series data when there are few observations (annual data is often all there is
available) variables display common trends and so are highly correlated. This means it is
difficult to discern individual effects of the RHS variables.

Suppose you regress consumption on a time trend, (a trend is just a variable that
increases by one for each year of the data)

```
  . reg cons trend

  Source |       SS       df       MS                  Number of obs =      45
        |------------------------------               F(  1,    43) =  960.81
  Model |  4.5380e+11     1  4.5380e+11               Prob > F      =  0.0000
  Residual |  2.0309e+10    43   472306243               R-squared     =  0.9572
        |------------------------------               Adj R-squared =  0.9562
  Total |  4.7411e+11    44  1.0775e+10               Root MSE      =   21733
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  cons |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
        |--------------------------------------------------------------------
  trend |   7732.329   249.4543     30.997   0.000       7229.257    8235.402
  _cons |   129380.1   6588.931     19.636   0.000       116092.2    142667.9
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

This appears highly significant and economically important.
However a 3 variable regression of consumption on the trend and income gives

```
  . reg cons trend income

  Source |       SS       df       MS                  Number of obs =      45
        |------------------------------               F(  2,    42) = 2919.99
  Model |  4.7072e+11     2  2.3536e+11               Prob > F      =  0.0000
  Residual |  3.3853e+09    42  80603294.8               R-squared     =  0.9929
        |------------------------------               Adj R-squared =  0.9925
  Total |  4.7411e+11    44  1.0775e+10               Root MSE      =  8977.9
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  cons |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval]
        |--------------------------------------------------------------------
  trend |  -140.4874   553.0085     -0.254   0.801      -1256.504    975.5288
  income |   .9333721   .0644142     14.490   0.000       .8033789    1.063365
  _cons |   11579.25   8573.289      1.351   0.184      -5722.351    28880.84
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

The trend variable is now insignificant, the standard error on the estimate has increased
massively and the sign of the coefficient is negative. This does not look sensible.
Suppose now drop just one observation from the data set

```
. reg cons trend income if year>55
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 44</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F(2, 41) = 2746.58</td>
</tr>
<tr>
<td>Model</td>
<td>4.5073e+11</td>
<td>2</td>
<td>2.2536e+11</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>3.3641e+09</td>
<td>41</td>
<td>82052169.7</td>
<td>R-squared = 0.9926</td>
</tr>
<tr>
<td>Total</td>
<td>4.5409e+11</td>
<td>43</td>
<td>1.0560e+10</td>
<td>Adj R-squared = 0.9922</td>
</tr>
</tbody>
</table>

| cons | Coef. Std. Err. t P>|t| [95% Conf. Interval] |
|------|----------------------|--------|------------------|---------------------|
| trend | -66.88367 576.4408 -0.116 0.908 -1231.029 1097.262 |
| income | .926338 .0664476 13.941 0.000 .7921443 1.060532 |
| _cons | 12029.33 8695.204 1.383 0.174 -5530.987 29589.65 |

When we drop just one observation from the data the estimates again change noticeably.

Both these patterns are classic symptoms of multicolinearity. This can be confirmed by the simple pair-wise correlation between trend and income.

```
. corr cons trend income
(obs=45)
```

<table>
<thead>
<tr>
<th>cons</th>
<th>trend</th>
<th>income</th>
</tr>
</thead>
<tbody>
<tr>
<td>cons</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>trend</td>
<td>0.9783 1.0000</td>
<td></td>
</tr>
<tr>
<td>income</td>
<td>0.9964 0.9825 1.0000</td>
<td></td>
</tr>
</tbody>
</table>

Testing in the Multiple Regression Model

In general all the tests used in the simple regression model hold when we extend the model to the case of multiple right hand side variables.

The only difference of note is that the degrees of freedom used to calculate critical values for t, F tests etc will change.

\[t = \frac{\hat{\beta}_1 - \beta_1}{\text{s.e.}(\hat{\beta}_1)} \sim t_{\alpha/2}^{N-k} \]

ie N-k rather than n-2 degrees of freedom as in 2 variable case

and F Test for Goodness of Fit of Model as a whole is now

\[F = \frac{(ESS/TSS) / k-1}{(RSS/TSS)/N-k} = \frac{R^2/k-1}{(1-R^2)/(N-k)} \]
ie k-1 and N-k rather than 2-1 and n-2 degrees of freedom as in 2 variable case (k = no. of rhs coefficients including the constant)

The R^2 use in this calculation is the same as before as is its interpretation as the square of the correlation coefficient between predicted and actual value

The Adjusted R^2

One problem with using the R^2 in a multiple regression is (can show) that the R^2 (and the ESS) will never fall when add regressors. (this is because OLS minimises the RSS so whenever a variable is dropped the RSS will always increase because the size of the residual increases)

- If so may be tempted to add as many variables as regressors in order to increase the fit of the model.

- Problem (notes on multicolinearity show) that this will increase the chance of introducing correlation between rhs variables which will inflate the estimated standard errors and run this risk of type II error.

Useful therefore to also report the *adjusted R^2*

$$
\bar{R}^2 = 1 - \frac{RSS \cdot (N-k)}{TSS \cdot N-1} = 1-(1-R^2) \cdot \frac{N-1}{N-k}
$$

which contains an adjustment factor so that while RSS never ↑ (and usually falls) when new variables added
(and the ESS will never ↓)
there is a penalty to adding new variables because N-k ↓ (so moving in the opposite direction to the effect of adding more variables on RSS)

Can show that *adjusted R^2* will only increase if the t value on the new variable > 1 (in absolute value)

useful (alternative) rule for deciding whether to keep a variable in a regression.
- If it raises the adjusted R^2 keep it in

Since can’t interpret the adjusted R^2 as the as the square of the correlation coefficient between predicted and actual value useful to report both in a multiple regression. Indeed the F test of goodness of fit uses the R^2 not adjusted R^2)
Example: Consider a multiple regression of the hourly pay of men on age, education and number of children (the data set wages.dta is on the web site)

```
reg hw age age2 grad inter low nchild if sex==1
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>39221.5745</td>
<td>6</td>
<td>6536.9290</td>
</tr>
<tr>
<td>Residual</td>
<td>389040.679</td>
<td>3329</td>
<td>116.864127</td>
</tr>
<tr>
<td>Total</td>
<td>428262.253</td>
<td>3335</td>
<td>128.414469</td>
</tr>
</tbody>
</table>

Number of obs = 3336
F(6, 3329) = 55.94
Prob > F = 0.0000
R-squared = 0.0916
Adj R-squared = 0.0899
Root MSE = 10.81

```
| hw | Coef.   Std. Err. | t    | P>|t|   [95% Conf. Interval] | |
|---|---|---|---|---|---|---|
| age | 0.6438038 | 0.0905387 | 7.11    | 0.000 | 0.4662866 | 0.821321 |
| age2 | -0.0063908 | 0.001124 | -5.69   | 0.000 | -0.0085945 | -0.0041871 |
| grad | 7.582444 | 0.6085913 | 12.46   | 0.000 | 6.389194 | 8.775695 |
| inter | 6.144656 | 0.6885252 | 8.92    | 0.000 | 4.794681 | 7.494631 |
| low | 2.103439 | 0.5149749 | 4.08    | 0.000 | 1.093739 | 3.113138 |
| nchildhh | 0.4709483 | 0.1899273 | 2.48    | 0.013 | 0.0985623 | 0.843343 |
| _cons | -7.704795 | 1.748915 | -4.41   | 0.000 | -11.13385 | -4.275739 |
```

All variables are significantly different from zero. If now add a dummy variable for whether individual lives in London

```
reg hw age age2 grad inter low nchild london if sex==1
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>40518.6812</td>
<td>7</td>
<td>5788.38303</td>
</tr>
<tr>
<td>Residual</td>
<td>387743.572</td>
<td>3328</td>
<td>116.509487</td>
</tr>
<tr>
<td>Total</td>
<td>428262.253</td>
<td>3335</td>
<td>128.414469</td>
</tr>
</tbody>
</table>

Number of obs = 3336
F(7, 3328) = 49.68
Prob > F = 0.0000
R-squared = 0.0946
Adj R-squared = 0.0927
Root MSE = 10.794

```
| hw | Coef.   Std. Err. | t    | P>|t|   [95% Conf. Interval] | |
|---|---|---|---|---|---|---|
| age | 0.6343054 | 0.0904461 | 7.01    | 0.000 | 0.4569699 | 0.8116409 |
| age2 | -0.0062593 | 0.0011229 | -5.57   | 0.000 | -0.008461 | -0.0040576 |
| grad | 7.410575 | 0.6098464 | 12.15   | 0.000 | 6.214863 | 8.606287 |
| inter | 6.110596 | 0.6875555 | 8.89    | 0.000 | 4.762522 | 7.45867 |
| low | 2.14441 | 0.5143395 | 4.17    | 0.000 | 1.135956 | 3.152863 |
| nchildhh | 0.4778624 | 0.1896502 | 2.52    | 0.012 | 0.1060196 | 0.8497052 |
| london | 2.088265 | 0.6258618 | 3.34    | 0.001 | 0.8611524 | 3.315378 |
| _cons | -7.754415 | 1.746322 | -4.41   | 0.000 | -11.17839 | -4.330441 |
```

New variable is also significant. Both R^2 and adjusted R^2 increase

If now add marital status of individual this is not significant and has a t value below 1. The R^2 still rises, but the adjusted R^2 is unchanged

```
reg hw age age2 grad inter low nchild london single if sex==1
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>40619.1855</td>
<td>8</td>
<td>5077.39819</td>
</tr>
<tr>
<td>Residual</td>
<td>387643.068</td>
<td>3327</td>
<td>116.514297</td>
</tr>
<tr>
<td>Total</td>
<td>428262.253</td>
<td>3335</td>
<td>128.414469</td>
</tr>
</tbody>
</table>

Number of obs = 3336
F(8, 3327) = 43.58
Prob > F = 0.0000
R-squared = 0.0948
Adj R-squared = 0.0927
Root MSE = 10.794

```
| hw | Coef.   Std. Err. | t    | P>|t|   [95% Conf. Interval] | |
|---|---|---|---|---|---|---|
| age | 0.5959395 | 0.0994347 | 5.99    | 0.000 | 0.4009802 | 0.7908987 |
```

16
Adjusted R^2 can even fall when (very insignificant) variables are added and in some cases (small sample sizes) can even be negative.

Can also use adjusted R^2 to compare non-nested models – models which one is not a special case of the other and which contain a different number of rhs variables – so using the R^2 would be the wrong comparison to make.

Compare a regression of hourly wages on a quadratic in years of education (ie edage & edage2) with the log of years of education. Both these specifications allow for a non-linear relationship between hourly pay and years of education. These models are also non-nested because can’t easily go from one to the other by simply excluding a variable. The issue is which is best?

Using the data set ps4data.dta

```
. reg lhw edage ed2 if reg==1      Model 1
Source |       SS       df       MS              Number of obs =     255
-------------+------------------------------           F(  2,   252) =   15.11
Model |  6.05947737     2  3.02973868           Prob > F      =  0.0000
Residual |  50.5286806   252  .200510637           R-squared     =  0.1071
-------------+------------------------------           Adj R-squared =  0.1000
Total |  56.5881579   254  .222788023           Root MSE      =  .44778
------------------------------------------------------------------------------
lhw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
edage |   .2285597    .126396     1.81   0.072    -.0203674    .4774867
ed2 |  -.0042452   .0033157    -1.28   0.202    -.0107752    .0022848
_cons |  -.7740635   1.179855    -0.66   0.512    -3.097697     1.54957
------------------------------------------------------------------------------
.
. reg lhw ledage if reg==1      Model 2
Source |       SS       df       MS              Number of obs =     255
-------------+------------------------------           F(  1,   253) =   29.63
Model |  5.93302893     1  5.93302893           Prob > F      =  0.0000
Residual |  50.655129   253  .200217901           R-squared     =  0.1048
-------------+------------------------------           Adj R-squared =  0.1013
Total |  56.5881579   254  .222788023           Root MSE      =  .44746
------------------------------------------------------------------------------
lhw |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
ledage |   1.269603   .2332282     5.44   0.000     .8102868    1.728919
_cons |  -1.725876   .6565078    -2.63   0.009    -3.018793   -.4329596
------------------------------------------------------------------------------
```

Might go with the regression with the highest R^2. (ie model 1)
This would be a mistake, since the R^2 does not penalise the use of more rhs variables, should use adjusted R^2 to make the comparison
And therefore can see model 2 is preferred (as it would be if looked at the t values on the individual coefficients)

Note: can’t use this to decide between models with different dependent (left hand side) variables

Tests of Restrictions

A variant of the test of goodness of fit of the model is instead to test a hypothesis that a sub-set of the right hand side variables are zero (rather than all of them as with the original F test or just one of them as in the t test)

Can show that test becomes

$$F = \frac{RSS_{restricted} - RSS_{unrestricted}}{RSS_{unrestricted}/N - K_{unrestricted}} \sim F(J, N-K_{unrestricted})$$

Or equivalently

$$F = \frac{R^2_{unrestricted} - R^2_{restricted}}{1-R^2_{unrestricted}/N - K_{unrestricted}} \sim F(J, N-K_{unrestricted})$$

Where

$J =$ No. of variables to be tested

restricted = values from model with variables set to zero (ie excluded from the regression specification)

unrestricted = values from model with variables included in the regression specification

Under the null that the extra variables have no explanatory power then wouldn’t expect the RSS from the two models to differ much

Hence **reject** null if estimated $F > F_{critical}$
F-Test for restriction on a sub-set of variables

Given a multiple regression model (using the data set ps4data.dta)

\[\text{. reg lhwage age edage union public if female==0} \]

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 6026</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>375.023052</td>
<td>4</td>
<td>93.755763</td>
<td>F(4, 6021) = 343.88</td>
</tr>
<tr>
<td>Residual</td>
<td>1641.59102</td>
<td>6021</td>
<td>.272644248</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>2016.61407</td>
<td>6025</td>
<td>.33470773</td>
<td>R-squared = 0.1860</td>
</tr>
</tbody>
</table>

\[\text{Adj R-squared = 0.1854} \]

\[\text{Root MSE = } .52215 \]

\[\text{--} \]

\[\text{llhage | Coef. Std. Err. t P>|t| [95% Conf. Interval]} \]

age	.0129394	.0005988	21.609	0.000	.0117656	.0141133
edage	.081065	.0025468	31.830	0.000	.0760724	.0860576
union	.0952227	.0154843	6.150	0.000	.0648679	.1255776
public	-.0121846	.0181974	-0.670	0.503	-.047858	.0234889
_cons	.1504611	.0539812	2.787	0.005	.0446387	.2562835

\[\text{--} \]

To test whether the union dummy variable is significantly different from zero, look at the estimated t value

The equivalent F test in stata is given by
test union=0

\[F(1, 6021) = 37.82 \]
\[\text{Prob > F = 0.0000} \]

\[\text{(which is just the square of the } t \text{ value } F = (\beta_i - \beta_i^0)^2) \]

\[\text{Var(} \beta_i \text{)} \]

To test whether the variables union and public are (jointly) insignificant – they don’t contribute to explaining the dependent variable

So omit union and public from the model and compare RSS

\[\text{(Intuitively: If RSS is significantly different between the 2 models then suggests omitted variables do contribute something to explain behaviour of dependent variable) } \]
. reg lhwage age edage if female==0

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 6026</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>364.003757</td>
<td>2</td>
<td>182.001879</td>
<td>F(2, 6023) = 663.31</td>
</tr>
<tr>
<td>Residual</td>
<td>1652.61031</td>
<td>6023</td>
<td>.27438325</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>2016.61407</td>
<td>6025</td>
<td>.33470773</td>
<td>Adj R-squared = 0.1802</td>
</tr>
</tbody>
</table>

| lhwage | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|---------|-----------|-------|----------|---------------------|
| age | .013403 | .0005926 | 22.615| 0.000 | .0122412 - .0145648 |
| edage | .0801733 | .0024976 | 32.100| 0.000 | .0752771 - .0850695 |
| _cons | .1763613 | .0532182 | 3.314 | 0.001 | .0720345 - .2806881 |

F test of null hypothesis that coefficients on union and public are zero (variables have no explanatory power)

\[
F = \frac{\text{RSSrest} - \text{RSSunrest}}{J} \sim F(J, N-K_{\text{unrest}})
\]

\[
= \frac{1652.6 - 1641.6}{2} \sim F(2, 6026) - 5
\]

\[
= 20.2
\]

From F tables, critical value at 5% level \(F(2, 6021) = F(2, \infty) = 3.00\)

So estimated \(F > F_{\text{critical}}\)

Stata equivalent is given by

(1) union = 0
(2) public = 0

\[
F(2, 6021) = 20.21
\]

Prob > F = 0.0000

So reject null that union and public sector variables jointly have no explanatory power in the model

Note that the t value on the public sector dummy indicates that the effect of this variable is statistically insignificant from zero, yet the combined F test has rejected the null that both variables have no explanatory power.

Be careful that test results don’t conflict

(technically the F test for joint restrictions is “less powerful test of single restrictions than the t test

Since this test is essentially a test of (linear) restrictions – in the above case the restriction was that the coefficients on the sub-set of variables were restricted to zero – other important uses of this test also include
Testing linear hypotheses

Eg. We know the Cobb-Douglas production function

\[y = AL^\alpha K^\beta \quad \text{with } \alpha + \beta = 1 \]

if there is constant returns to scale

(d.r.s. means \(\alpha + \beta < 1 \)
 i.r.s. means \(\alpha + \beta > 1 \))

Taking (natural) logs

\[\ln y = \ln A + \alpha \ln L + \beta \ln K \quad (1) \]

and can test the null \(H_0: \) by imposing the restriction that \(\alpha + \beta = 1 \) in (1) against an unrestricted version that does not impose the constraint.

Example: Using the data set prodfn.dta containing information on the output, labour input and capital stock of 27 firms

The unrestricted regression (ie not constraining the coefficients to sum to one) is

```
. reg logo logl logk
```

```
Source |       SS       df       MS              Number of obs =      27
-------------+------------------------------           F(  2,    24) =  200.25
Model |  14.2115637     2  7.10578187           Prob > F      =  0.0000
Residual |   .85163374    24  .035484739           R-squared     =  0.9435
-------------+------------------------------           Adj R-squared =  0.9388
Total |  15.0631975    26   .57935375           Root MSE      =  .18837

------------------------------------------------------------------------------
logo |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
logl |   .6029994    .125954     4.79   0.000     .3430432    .8629556
logk |   .3757102    .085346     4.40   0.000     .1995648    .5518556
    _cons |   1.170644    .326782     3.58   0.002     .4961988    1.845089
------------------------------------------------------------------------------
```

and test for the restriction using the command

```
constraint define 1 logl=1-logk
```

This produces a restricted OLS regression with the coefficients on logL and logk constrained to add to one

```
. cnsreg logo logl logk, constraint(1)
```

```
Constrained linear regression                          Number of obs =      27
Root MSE      =  .18501
( 1)  logl + logk = 1.0

------------------------------------------------------------------------------
logo |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
logl |   .6369701    .075408     8.45   0.000     .4816644    .7922758
logk |   .3630299    .075408     4.81   0.000     .2077242    .5183356
    _cons |   1.069265   .1317588     8.12   0.000     .7979026    1.340627
------------------------------------------------------------------------------
```

(note that the coefficients on logl & logk do add to one)
Using the formula

\[
F = \frac{RSS_{restrict} - RSS_{unrestrict}}{RSS_{unrestrict} / N - Kunrestrict} \sim F(J, N-Kunrestrict)
\]

Stata produces the following output

```
. test _b[logl]+_b[logk]=1
( 1) logl + logk = 1.0

    F(  1,    24) =    0.12
    Prob > F =    0.7366
```

So estimated \(F < F_{\text{critical}} \) at 5% level

So **accept null** that \(H_0: \alpha + \beta = 1 \)

So production function is Cobb-Douglas constant returns to scale

2) Testing Stability of Coefficients Across Sample Splits

Might think the estimated relationship varies over time or across easily characterised sub-groups of your data (e.g., by gender)

In this case test the restricted model

\[
Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u
\]

(1)

(i.e., coefficients same in both periods/both sub-groups)

Against an unrestricted model which allows the coefficients to vary across the two-subgroups/time periods

\[
Y = \beta_0^1 + \beta_1^1 X_1 + \beta_2^1 X_2 + u^1
\]

(2)

\[
Y = \beta_0^2 + \beta_1^2 X_1 + \beta_2^2 X_2 + u^2
\]

(3)

Can show that the unrestricted RSS in this case equals the *sum* of the RSS from the two sub-regressions (2) & (3)

So that

\[
F = \frac{RSS_{restrict} - (RSS_{group1} + RSS_{group2})}{RSS_{unrestrict} / N - Kunrestrict} \sim F(J, N-Kunrestrict)
\]

becomes

\[
F = \frac{RSS_{restrict} - (RSS_{group1} + RSS_{group2})}{RSS_{group1} + RSS_{group2} / N - Kunrestrict} \sim F(J, N-Kunrestrict)
\]

where \(j \) is again the number of variables restricted (in this case the entire set of rhs variables including the constant)
Eg: Chow Test for Structural Break in Time Series Data

u cons /* read in consumption function data for years 1955-99 */

twoway (scatter cons year, msymbol(none) mlabel(year)), xlabel(55(5)100) xline(90)

Graph suggests relationship between consumption and income changes over the sample period.
(slope is steeper in 2nd period)
Try sample split before and after 1990

. reg cons income if year<90

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1.5750e+11</td>
<td>1</td>
<td>1.5750e+11</td>
<td>F(1, 33) = 3190.74</td>
</tr>
<tr>
<td>Residual</td>
<td>1.6289e+09</td>
<td>33</td>
<td>49361749.6</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1.5913e+11</td>
<td>34</td>
<td>4.6803e+09</td>
<td>R-squared = 0.9898</td>
</tr>
</tbody>
</table>

| cons | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------|----------|-----------|------|------|----------------------|
| income | .9467359 | .0167604 | 56.487 | 0.000 | .9126367 .9808351 |
| _cons | 6366.214 | 4704.141 | 1.353 | 0.185 | -3204.433 15936.86 |

. reg cons income if year>=90

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1.2302e+10</td>
<td>1</td>
<td>1.2302e+10</td>
<td>F(1, 8) = 75.58</td>
</tr>
<tr>
<td>Residual</td>
<td>1.3020e+09</td>
<td>8</td>
<td>162754768</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1.3604e+10</td>
<td>9</td>
<td>1.5115e+09</td>
<td>R-squared = 0.9043</td>
</tr>
</tbody>
</table>

| cons | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------|----------|-----------|------|------|----------------------|
| income | 1.047171 | .1204489 | 8.694 | 0.000 | .7694152 1.324927 |
| _cons | -53227.48 | 59208.12 | -0.899 | 0.395 | -189761.6 83306.68 |

Looks like coefficients are different across periods, but standard error for second period estimate is much larger. (why?)

Compare with regression pooled over both periods (restricting coefficients to be the same in both periods).

. reg cons income

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4.7072e+11</td>
<td>1</td>
<td>4.7072e+11</td>
<td>F(1, 43) = 5969.79</td>
</tr>
<tr>
<td>Residual</td>
<td>3.3905e+09</td>
<td>43</td>
<td>78849774.6</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>4.7411e+11</td>
<td>44</td>
<td>1.0775e+10</td>
<td>R-squared = 0.9928</td>
</tr>
</tbody>
</table>

| cons | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------|----------|-----------|------|------|----------------------|
| income | .9172948 | .0118722 | 77.264 | 0.000 | .8933523 .9412372 |
| _cons | 13496.16 | 4025.456 | 3.353 | 0.002 | 5378.05 21614.26 |

Chow Test for sample split

\[F = \frac{\text{RSS}_{\text{restrict}} - \text{RSS}_{\text{unrestrict}}}{J} \sim F(J, N_{\text{Kunrestrict}}) \]
\[\text{RSS}_{\text{unrestrict}} /N_{\text{Kunrestrict}} \]

\[= \frac{3.39 - (1.63+1.30)/2}{(1.63+1.30)/45-2(2)} \]
Important: With this form of the test there are twice as many coefficients in the unrestricted regressions (income and the constant for the period 1955-89, and a different estimate for income and the constant for the period 1990-99,

so the unrestricted degrees of freedom are

\[N = N_{55-89} + N_{90-99} = 35 + 10 = 45 \]

and \(k = 2 \times 2 \)

\[= 3.22 \sim F(2, 41) \]

From table F critical at 5% level is 3.00. Therefore reject null that coefficients are the same in both time periods. Hence mpc is not constant over time.

Example 2: Chow Test of Structural Break – Cross Section Data

Suppose wish to test whether estimated OLS coefficients were the same for men and women in ps2data.dta

Restricted regression is obtained by pooling all observations on men & women and running a single OLS regression

```
.reg lhwage age edage union public
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 12098</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>763.038968</td>
<td>4</td>
<td>190.759742</td>
<td>F(4, 12093) = 724.06</td>
</tr>
<tr>
<td>Residual</td>
<td>3186.01014</td>
<td>12093</td>
<td>.263459038</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>3949.04911</td>
<td>12097</td>
<td>.326448633</td>
<td>R-squared = 0.1932</td>
</tr>
</tbody>
</table>

| lhwage | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|---------|-----------|-------|------|---------------------|
| age | .0100706 | .0004335 | 23.231| 0.000 | .0092209 to .0109204 |
| edage | .0869484 | .0018669 | 46.574| 0.000 | .083289 to .0906078 |
| union | .1780204 | .0109133 | 16.312| 0.000 | .1566285 to .1994123 |
| public | -.0250529 | .0114298 | -2.192| 0.028 | -.0474571 to -.0026487 |
| _cons | .0177325 | .0393914 | 0.450 | 0.653 | -.059481 to .094946 |

Unrestricted regression obtained by running separate estimates for men and women (effectively allowing separate estimates of the constant and all the slope variables) and then adding the residual sums of squares together
Men
\[\text{reg lhwage age edage union public if female==0} \]

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 6026</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>375.023052</td>
<td>4</td>
<td>93.755763</td>
<td>F(4, 6021) = 343.88</td>
</tr>
<tr>
<td>Residual</td>
<td>1641.59102</td>
<td>6021</td>
<td>.272644248</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>2016.61407</td>
<td>6025</td>
<td>.33470773</td>
<td>R-squared = 0.1860</td>
</tr>
</tbody>
</table>

| lhwage | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|-------|-----------|-------|--------|----------------------|
| age | .0129394 | .0005988 | 21.609 | 0.000 | .0117656 – .0141133 |
| edage | .081065 | .0025468 | 31.830 | 0.000 | .0760724 – .0860576 |
| union | .0952227 | .0154843 | 6.150 | 0.000 | .0648679 – .1255776 |
| public | -.0121846 | .0181974 | -0.670 | 0.503 | -.047858 – .0234889 |
| _cons | .1504611 | .0539812 | 2.787 | 0.005 | .0446387 – .2562835 |

Women
\[\text{reg lhwage age edage union public if female==1} \]

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 6072</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>407.028301</td>
<td>4</td>
<td>101.757075</td>
<td>F(4, 6067) = 464.55</td>
</tr>
<tr>
<td>Residual</td>
<td>1328.94152</td>
<td>6067</td>
<td>.21904426</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1735.96982</td>
<td>6071</td>
<td>.28594462</td>
<td>R-squared = 0.2345</td>
</tr>
</tbody>
</table>

| lhwage | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|-------|-----------|-------|--------|----------------------|
| age | .0051823 | .0005881 | 8.811 | 0.000 | .0040293 – .0063353 |
| edage | .0854792 | .0025947 | 32.944 | 0.000 | .0803927 – .0905657 |
| union | .2086894 | .0145456 | 14.347 | 0.000 | .1801748 – .2372039 |
| public | .0784844 | .0141914 | 5.530 | 0.000 | .0506642 – .1063045 |
| _cons | .066159 | .0545192 | 1.213 | 0.225 | -.040718 – .1730359 |

\[F = \frac{\text{RSS}_{\text{restrict}} - \text{RSS}_{\text{unrestrict}}}{\text{J}} \]
\[\sim F(J, N-\text{Kunrestrict}) \]
\[\text{RSS}_{\text{unrestrict}} / (N-\text{Kunrestrict}) \]

becomes

\[F = \frac{\text{RSS}_{\text{pooled}} - (\text{RSS}_{\text{men}} + \text{RSS}_{\text{women}}) \text{/ No. Restricted}}{(\text{RSS}_{\text{men}} + \text{RSS}_{\text{women}}) \text{/ N- Kunrestrict}} \]

\[= \frac{3186 - (1641.6 + 1328.9) / 5}{(1641.6 + 1328.9) / 12098 - 2(5)} \sim F(5, 12098 -10) \]
\[= 175.4 \]

Note
1. J= 5 because 5 values are restricted – (constant, age, edage, union, public)
2. N-Kunrestricted = 12098 – 2(5)
because in the unrestricted regression there are 2*5 estimated parameters (5 for men and 5 for women)

From F tables, critical value at 5% level \(F(5, 12088) = F(5, \infty) = 2.21 \)

So estimated \(F > F_{\text{critical}} \)
Reject null that coefficients are the same for men and women