The Shape of Space

Dr. Aditi Kar

21 September 2016
What is the shape of space?

Figure: Hubble 25th anniversary photo
Introduction

Is Mathematics all about numbers?
Is Mathematics all about numbers?
Another *mathematical* aspect of the natural world: **shape**.
Is Mathematics all about numbers?

Another *mathematical* aspect of the natural world: **shape**.

Shape and symmetry: we use these to recognise objects around us.
Is Mathematics all about numbers?

Another *mathematical* aspect of the natural world: **shape**.

Shape and symmetry: we use these to recognise objects around us.

Likewise, in advanced *geometry* and *group theory*, we classify objects via *shape*.
Some famous Geometers of today

Gromov, Abel Prize 2009.

Agol, Mathematics Breakthrough Prize 2016.

Mirzakhani, Fields Medal 2014.
Shape = local and global geometry of an object.
Shape = local and global geometry of an object.
Let’s start by talking Geometry.
Familiar geometry: here,
 - any two points are joined by a line,
 - 3 points define a triangle,
 - two lines either cross one another or are parallel.

Sum of Angles in a triangle = 180° or π.
Familiar geometry: here,

- any two points are joined by a line,
- 3 points define a triangle,
- two lines either cross one another or are parallel.

Sum of Angles in a triangle $= 180^\circ$ or π.

No curvature

Flat geometry with $\kappa = 0$.
Sphere

Sum of angles in a (geodesic) triangle $\geq 180^\circ$!

Positive curvature
Spherical geometry with $\kappa > 0$.

Dr. Aditi Kar The Shape of Space
Sum of angles in a (geodesic) triangle $\geq 180^\circ$!
Sum of angles in a (geodesic) triangle $\geq 180^\circ$.

Positive curvature
Sum of angles in a (geodesic) triangle $\geq 180^\circ$!

Positive curvature

Spherical geometry with $\kappa > 0$.

Dr. Aditi Kar
The Shape of Space
Hyperbolic Geometry

Geometry of the saddle back

Triangles on the saddleback are very thin!
Euclid’s parallel postulate fails.

Negative Curvature
Hyperbolic geometry with \(\kappa < 0 \).
How different are these geometries?

In the plane, the area of a right triangle $= \frac{1}{2} \times \text{base} \times \text{height}$.

[Diagram of a right triangle with labels for base and height]
Gauss Bonnet formula

Triangle on a sphere

Area = (sum of angles - π) \times radius.
Gauss Bonnet formula

Triangle on a sphere

Area = (sum of angles - \(\pi \)) \times \text{radius}.

Here, area = \(\frac{\pi}{2} \times \text{radius} \).
Gauss Bonnet formula

Triangle on a sphere

Area = (sum of angles - π) \times radius.

Here, area = $\frac{\pi}{2} \times$ radius.
Let’s check this.
Surface area of a sphere =
Triangle on a sphere

\[
\text{Area} = (\text{sum of angles} - \pi) \times \text{radius}.
\]

Here, area = \(\frac{\pi}{2} \times \text{radius}\).
Let’s check this.
Surface area of a sphere = \(4\pi \times \text{radius}\).
Gauss Bonnet formula

Triangle on a sphere

Area = (sum of angles - π) × radius.

Here, area = $\frac{\pi}{2} \times$ radius.
Let’s check this.
Surface area of a sphere = $4\pi \times$ radius.
And, there are 8 octants in the sphere.
Different shapes

Locally: all Euclidean. Globally: different!
Journey to ∞?

Are we ready...
Is the universe...

- bounded or infinite?
- Euclidean or flat ($\kappa = 0$), hyperbolic or saddleback ($\kappa < 0$) or, spherical ($\kappa > 0$)?
- Finally, how the universe is put together, i.e. simply connected space or not?
According to General Relativity, the shape of universe is determined by its density: the amount of mass spread over its volume.
According to General Relativity, the shape of universe is determined by its **density**: the amount of mass spread over its volume.

- **Too little mass**: **saddleback** geometry, infinite, with the universe expanding forever.

- **Too much mass**: spherical geometry, finite, expansion will stop and the universe will start to contract heading for the **BIG CRUSH**!

- **Just right**: Euclidean Geometry, infinite, the expansion will slow down gradually over an infinite amount of time.
The future will tell...

According to General Relativity, the shape of universe is determined by its **density**: the amount of mass spread over its volume.

- **Too little mass**: saddleback geometry, infinite, with the universe expanding forever.
- **Too much mass**: spherical geometry, finite, expansion will stop and the universe will start to contract heading for the BIG CRUSH!
According to General Relativity, the shape of universe is determined by its **density**: the amount of mass spread over its volume.

- **Too little mass**: saddleback geometry, infinite, with the universe expanding forever.
- **Too much mass**: spherical geometry, finite, expansion will stop and the universe will start to contract heading for the BIG CRUSH!
- **Just right**: Euclidean Geometry, infinite, the expansion will slow down gradually over an infinite amount of time.
Let the journey begin...
Let the journey begin...

aditi.kar@rhul.ac.uk