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Abstract. A countable discrete group G is C∗-exact or simply, exact, if its reduced
C∗-algebra C∗r(G) is an exact C∗-algebra (i.e. if taking the minimal tensor product
with C∗r(G) preserves short exact sequences of C∗-algebras). Equivalently, G is
exact if it admits an amenable action on some compact Hausdorff space. Exact
groups are also said to be boundary amenable, amenable at infinity, to have Guo-
liang Yu’s property A or to be coarsely amenable. The exactness is viewed as a
weak amenability type condition. All amenable groups, linear groups, Gromov’s
hyperbolic groups, groups with finite asymptotic dimension, and many other
familiar groups are known to be exact. In contrast, constructions of non-exact
groups are rare and technically quite involved. We will discuss such construc-
tions, indicate applications, and suggest some open problems.

Pre-requisites: basic undergraduate knowledge in combinatorial group theory
(e.g. free groups, presentations of groups by generators and relators, Cayley
graphs), graphs, and C∗-algebras.

Reference books.
For more details on basic concepts of combinatorial group theory one can

consult:
Lyndon, Roger C.; Schupp, Paul E. Combinatorial group theory. Reprint of the

1977 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+339 pp.
ISBN: 3-540-41158-5

For a recent account on C∗-algebras one can consult:
Brown, Nathanial P.; Ozawa, Narutaka C∗-algebras and finite-dimensional ap-

proximations. Graduate Studies in Mathematics, 88. American Mathematical
Society, Providence, RI, 2008. xvi+509 pp. ISBN: 978-0-8218-4381-9

For the discussion on exact and non-exact groups in the context of large scale
geometry on can consult:

Nowak, Piotr W.; Yu, Guoliang Large scale geometry. EMS Textbooks in Math-
ematics. European Mathematical Society (EMS), Zrich, 2012. xiv+189 pp. ISBN:
978-3-03719-112-5
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